Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Portfolio Optimization with Multivariate Copula: a Monte Carlo Study

According to Markowitz (1952) portfolio theory assumed that the investor has a concave utility function that expresses an attitude of risk aversion and managed to put portfolio selection based on two criteria, mean and variance. Other studies have improved this approach and following Basel II recommendations by using Value-at-Risk (VaR) as a standard risk measure in finance, Alexander & Baptist...

متن کامل

Copula-based Multivariate GARCH Model with Uncorrelated Dependent Errors∗

Multivariate GARCH (MGARCH) models are usually estimated under multivariate normality. In this paper, for non-elliptically distributed financial returns, we propose copula-based multivariate GARCH (C-MGARCH) model with uncorrelated dependent errors, which are generated through a linear combination of dependent random variables. The dependence structure is controlled by a copula function. Our ne...

متن کامل

Exact Hamiltonian Monte Carlo for Truncated Multivariate Gaussians

We present a Hamiltonian Monte Carlo algorithm to sample from multivariate Gaussian distributions in which the target space is constrained by linear and quadratic inequalities or products thereof. The Hamiltonian equations of motion can be integrated exactly and there are no parameters to tune. The algorithm mixes faster and is more efficient than Gibbs sampling. The runtime depends on the numb...

متن کامل

Model and distribution uncertainty in multivariate GARCH estimation: A Monte Carlo analysis

Multivariate GARCH models are in principle able to accommodate the features of the dynamic conditional correlations processes, although with the drawback, when the number of financial returns series considered increases, that the parameterizations entail too many parameters.In general, the interaction between model parametrization of the second conditional moment and the conditional density of ...

متن کامل

Spherical Hamiltonian Monte Carlo for Constrained Target Distributions

Statistical models with constrained probability distributions are abundant in machine learning. Some examples include regression models with norm constraints (e.g., Lasso), probit models, many copula models, and Latent Dirichlet Allocation (LDA) models. Bayesian inference involving probability distributions confined to constrained domains could be quite challenging for commonly used sampling al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dependence Modeling

سال: 2019

ISSN: 2300-2298

DOI: 10.1515/demo-2019-0006